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Introduction

Preliminaries

Consider an operator A : X → Y between Hilbert spaces X and Y .

Inverse Problem (General task)

Given measured noisy data

y δ = Ax† + τ, (1)

obtain an approximation x̂ for x†, where τ , with ‖τ‖ ≤ δ, describes
the noise in the measurement.
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Introduction

Preliminaries

Classical approach: Variational regularization

x̂α = arg min
1

2
‖Ax − y δ‖2 + αR(x) (2)

Examples of hand-crafted priors:

‖x‖2

‖x‖1
TV (x)

Remark: α selection
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Introduction

Deep learning and inverse problems

Primal-Dual reconstructions

Learned gradient descent

Learned post-processing: Fθ ◦ A†

Learned regularizers: Rθ
Learned priors and generative networks (GAN, VAE)

Drawbacks:

Need a lot of data. How to get the ground-truths?

Real data noise might be different from the one present on
the training samples.
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Introduction

Is it possible to solve inverse problems using deep learning without
any training data?
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Introduction

Generative Networks

Let’s consider a generative Neural Network ϕW (z) previously
trained.

W is fixed after the training phase.

We can obtain images by sampling z.

For solving inverse problems:

ẑ = arg minz ‖ϕW (z)− y δ‖
x̂ = ϕW (ẑ)

Can we obtain images by sampling W for a fixed z using the same
network architecture (without training)?
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Can we obtain images by sampling W for a fixed z using the same
network architecture (without training)?

9 / 47



33
Introduction

Generative Networks

Let’s consider a generative Neural Network ϕW (z) previously
trained.

W is fixed after the training phase.

We can obtain images by sampling z.

For solving inverse problems:
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Deep Image Prior (DIP)
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Deep Image Prior (DIP)

Basic Idea1

Given measured noisy data

y δ = Ax† + τ, (3)

train a neural network ϕW (z) with parameters W by minimizing
the loss function

‖AϕW (z)− y δ‖2 (4)

with respect to W , for a single fixed input z and output y δ.

Then compute x̂ = ϕW (z)

1Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. “Deep Image Prior”. In: CoRR (2017). arXiv:
1711.10925.
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Deep Image Prior (DIP)

Some insights

The network ϕW (z) has a standard U-Net-like architecture.

It has enough expressive power to reproduce some noise.

Optimization method with early stopping plays an important
role.

Solving each instance requires training the network.

It takes a lot of time.
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Example

(a) Data (yδ) (b) Iteration 0
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Example
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Example

(a) Data (yδ) (b) Iteration 1050
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Example
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Example

(a) Data (yδ) (b) Iteration 1150
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Example

(a) Data (yδ) (b) Iteration 1200
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Example
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Example

(a) Data (yδ) (b) Iteration 1300
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Example

(a) Data (yδ) (b) Iteration 1350
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Example

(a) Data (yδ) (b) Iteration 1400
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Example

(a) Data (yδ) (b) Iteration 1650
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Example

(a) Data (yδ) (b) Iteration 1700
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Example

(a) Data (yδ) (b) Iteration 1800
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Example

(a) Data (yδ) (b) Iteration 1900
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DIP vs Global-Local GAN2

(a) Iteration 1900 (b) Global-Local GAN

2Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. “Globally and Locally Consistent Image Completion”.
In: ACM Transactions on Graphics (Proc. of SIGGRAPH 2017) 36.4 (2017).
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Section 3

Analytic Deep Prior
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Analytic Deep Prior

Trivial remark

Can the DIP approach be used to solve ill-posed inverse problems?

Consider a trivial network ϕW (z) = W , and that W corresponds
to elements in X .

=⇒ The approximate solution to the inverse problem is given by
x̂ = ϕW (z) = W .

=⇒ Minimizing ‖AϕW (z)− y δ‖2 = ‖AW − y δ‖ by gradient
descent with respect to W is equivalent to the classical Landweber
iteration.

α ∼ 1

n
(5)
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Analytic Deep Prior

Convex optimization reminder

In the variational approach we usually minimize:

J(x) =
1

2
‖Ax − y δ‖2 + αR(x). (6)

where R is convex but not differentiable.

The necessary first order condition for a minimizer is given by

0 ∈ A∗(Ax − y δ) + α∂R(x) (7)

x ∈ x + λA∗(Ax − y δ) + λα∂R(x) (8)

x − λA∗(Ax − y δ) ∈ x + λα∂R(x). (9)

which is equivalent to

Prox
λαR

(
x − λA∗(Ax − y δ)

)
= x . (10)
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Analytic Deep Prior

Convex optimization reminder

Turning the fixed point condition into an iteration scheme yields

xk+1 = Prox
λαR

(
xk − λA∗(Axk − y δ)

)
(11)

= Prox
λαR

(
(I − λA∗A)xk + λA∗y δ

)
. (12)

Rewriting W = I − λA∗A, b = λA∗ and φ(·) = ProxλαR(·) yields

xk+1 = φ
(
Wxk + b

)
(13)

19 / 47
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Convex optimization reminder

Example

Consider R(x) = I+(x) (indicator function for non-negative
numbers)

Prox
λαR

(x) = ReLu(x) (14)

The iteration scheme xk+1 = φ
(
Wxk + b

)
is quite similar to a

Neural Network.

20 / 47
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Analytic Deep Prior

Now we consider the particular architecture of a fully connected
feed-forward iterative network with L identical layers

ϕW (z) = xL, (15)

where
xk+1 = φ

(
Wxk + b

)
(16)

for k = 0, .., L− 1 and x0 = z .

φ is the proximal mapping of a regularizing functional λαR

W is such that I −W = λB∗B for some B

b = λB∗y δ

21 / 47
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Analytic Deep Prior

In this setting, ϕW (z) is identical to the L-th iterate of the PG
method for minimizing

JB(x) =
1

2
‖Bx − y δ‖2 + αR(x), (17)

If ϕW (z) = x(B) = arg min JB(x): Updating W , i.e. B, changes
the discrepancy term in the Tikhonov functional.

Definition

We call this setting an analytic deep prior if B is trained from a
single data point y δ by gradient descent applied to

min
B
‖Ax(B)− y δ‖2. (18)

22 / 47
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Analytic Deep Prior

Training/Optimization

The training of B for given data y δ is achieved by a gradient
descent method applied to

F (B) =
1

2
‖Ax(B)− y δ‖2 (19)

s.t. x(B) = arg min
x

JB(x). (20)

The stationary points are characterized by ∂F (B) = 0 and gradient
descent iterations with stepsize η are given by

B`+1 = B` − η∂F (B`). (21)

Hence we need to compute the derivative of F with respect to B.

23 / 47
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Example

Consider R(x) = 1
2‖x‖

2.

In this case x(B) = arg min JB(x) = (B∗B + αI )−1B∗y δ.

For illustration we consider the rather unrealistic case x† = u,
where u is a singular function of A (Au = σv)

y δ = Au + δv = (σ + δ)v (22)

A lengthy computation exploiting B0 = A and β0 = σ shows that

B`+1 = B` − c`vu
∗ (23)

25 / 47
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Analytic Deep Prior

Implementation

Goal: Find optimal B, to minimize the loss function

1

2
‖Ax(B)− y δ‖2 (24)

Equivalent to train the network ϕW (z) for the single data point
(z , y δ) updating B by back-propagation.

How many layers should the network have in order to ensure that
ϕW (z) = x(B) = arg min JB?

Thousands of layers! (slow convergence of the PG method).

Prohibitive!

26 / 47
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Implementation

Solution:

Consider only a reduced network with a small number,
L = 10, of layers
Set the input to be the network’s output after the previous
iteration.

Figure: The implicit network with (k + 1)L layers. Here ϕL
Wk

refers to a

block of L identical fully connected layers with weights Wk = I − λBT
k Bk

and bk = λBT
k yδ.
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Section 4

Academic Example
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Academic Example

Setup

Consider the integration operator A : L2 ([0, 1]) → L2 ([0, 1])

(Ax) (t) =

∫ t

0
x(s)ds. (25)

and

An ∈ Rn×n: discretization of A.

x† ∈ Rn: one of the singular vectors u of A.

y δ = Anx
† + τ with τ ∼ N (0, σ21n)

29 / 47
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Ground-truth and data

0.0 0.2 0.4 0.6 0.8 1.0
0.10

0.05

0.00

0.05

0.10

x

0.0 0.2 0.4 0.6 0.8 1.0

0.005

0.000

0.005

y

y

Figure: x† = u5 and yδ with n = 200 and 10% of noise.
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Results (R(·) = 1
2‖ · ‖

2)
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Ground-truth and data

0.0 0.2 0.4 0.6 0.8 1.0

50

0

50

x

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.2

0.0

0.2

0.4

y

y

Figure: x†: sparse and yδ with n = 200 and 10% of noise.
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Results (R(·) = ‖ · ‖1)
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Network convergence
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Figure: Difference between xk and x(Bk) after each training iteration k.
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Results (adaptive α)
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Section 5

Magnetic Particle Imaging (MPI)
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Magnetic Particle Imaging (MPI)

What is MPI?
Imaging modality based on injecting ferromagnetic nanoparticles
which are consequently transported by the blood flow.

Goal: Measure the 3-D location and concentration of the
nanoparticles.

Advantages:

High spacial resolution
(< 1mm)

Measurement time (< 0.1 s)

No harmful radiation

Figure: Magnetic particles
developed in Lübeck

37 / 47



33
Magnetic Particle Imaging (MPI)

What is MPI?
Imaging modality based on injecting ferromagnetic nanoparticles
which are consequently transported by the blood flow.

Goal: Measure the 3-D location and concentration of the
nanoparticles.

Advantages:

High spacial resolution
(< 1mm)

Measurement time (< 0.1 s)

No harmful radiation

Figure: Magnetic particles
developed in Lübeck
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Magnetic Particle Imaging (MPI)

How it works?

A magnetic field is applied, which is a superposition of:

static gradient field, which generates a field-free-point (FFP)
highly dynamic spatially homogeneous field, which moves the
FFP in space.

Mean magnetic moment of the nanoparticles in the
neighborhood of the FFP generates an electro-magnetic field.

Voltages are measured by so-called receive coils.

The time-dependent measurements v`(t) in the receive coils
constitute the data for reconstructing c(x).
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Magnetic Particle Imaging (MPI)

Inverse Problem

Linear Fredholm integral equation of the first kind describes the
forward operator.

Precisely modeling MPI is still an unsolved problem3.

The integral kernel is commonly determined in a
time-consuming calibration procedure.

After discretization we end up with a linear system:

Sc = v (26)

Goal: Reconstruct c from measured noisy data v δ = Sc + τ .

3Tobias Kluth, Bangti Jin, and Guanglian Li. “On the degree of ill-posedness of multi-dimensional magnetic
particle imaging”. In: Inverse Problems 34.9 (2018).
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Experimental setup

Figure: Used experimental platform with the FFP trajectory in blue. 4

4Photo taken at University Medical Center Hamburg-Eppendorf by T. Kluth.
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Results

(a) Phantom (4mm) (b) Kacmarz reconstruction
(α = 5 · 10−4)
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Results

(a) Phantom (4mm) (b) l1 reconstruction
(α = 5 · 10−3)
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Results

(a) Phantom (4mm) (b) DIP reconstruction
(lr = 5 · 10−5)
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Magnetic Particle Imaging (MPI)

Results

(a) Phantom (2mm) (b) Kacmarz reconstruction
(α = 5 · 10−4)
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Results

(a) Phantom (2mm) (b) l1 reconstruction
(α = 5 · 10−3)
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Magnetic Particle Imaging (MPI)

Results

(a) Phantom (2mm) (b) DIP reconstruction
(lr = 5 · 10−5)
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Thanks!

47 / 47


	Introduction
	Deep Image Prior (DIP)
	Analytic Deep Prior
	Academic Example
	Magnetic Particle Imaging (MPI)
	 

