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Preliminaries

Consider an operator A: X — Y between Hilbert spaces X and Y.
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Preliminaries

Consider an operator A: X — Y between Hilbert spaces X and Y.

Inverse Problem (General task)

Given measured noisy data
Y= A+ 7, (1)

obtain an approximation % for xT, where 7, with ||7|| < 6, describes
the noise in the measurement.
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Classical approach: Variational regularization

1
Ko = arg min §||Ax — V|2 + aR(x)
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Introduction

Preliminaries

Classical approach: Variational regularization
1
Ko = arg min §||Ax — V|2 + aR(x)

Examples of hand-crafted priors:
N
= [|x]l1
m TV(x)

Remark: « selection
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Deep learning and inverse problems

Primal-Dual reconstructions
Learned gradient descent
Learned post-processing: Fy o Af
Learned regularizers: Ry

Learned priors and generative networks (GAN, VAE)

. 7/47
DFG @ Universitat Bremen J




Introduction

mng,

Deep learning and inverse problems

Primal-Dual reconstructions

Learned gradient descent

Learned post-processing: Fy o Af

Learned regularizers: Ry

Learned priors and generative networks (GAN, VAE)

Drawbacks:
Need a lot of data. How to get the ground-truths?

Real data noise might be different from the one present on
the training samples.

DFG @ Universitat Bremen
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Is it possible to solve inverse problems using deep learning without
any training data?
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Generative Networks

Let's consider a generative Neural Network oy (z) previously
trained.

m W is fixed after the training phase.
m We can obtain images by sampling z.
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Generative Networks

Let's consider a generative Neural Network oy (z) previously
trained.

m W is fixed after the training phase.

m We can obtain images by sampling z.
For solving inverse problems:

® 2 =argmin, ||[ow(z) — y6||
m X =pw(2)
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Introduction

Generative Networks

Let's consider a generative Neural Network oy (z) previously
trained.

W is fixed after the training phase.

We can obtain images by sampling z.

For solving inverse problems:
2 = argmin, [low(z) — y°|
X =pw(2)

Can we obtain images by sampling W for a fixed z using the same
network architecture (without training)?
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Section 2

Deep Image Prior (DIP)
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Basic Ideal

Given measured noisy data

yo = Axt + 1, (3)

1Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. “Deep Image Prior". In: CoRR (2017). arXiv:
1711.10925.
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Basic Ideal

Given measured noisy data
yo = Axt + 1, (3)

train a neural network ¢u/(z) with parameters W by minimizing
the loss function

|Aow(z) — y°|I? (4)

with respect to W, for a single fixed input z and output y°.

1Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. “Deep Image Prior". In: CoRR (2017). arXiv:
1711.10925.
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Basic Ideal

Given measured noisy data
yo = Axt + 1, (3)

train a neural network ¢u/(z) with parameters W by minimizing
the loss function

|Aow(z) — y°|I? (4)

with respect to W, for a single fixed input z and output y°.

Then compute X = pw/(z)

1Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. “Deep Image Prior". In: CoRR (2017). arXiv:
1711.10925.
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Some insights

® The network ¢ (z) has a standard U-Net-like architecture.
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Some insights

® The network ¢ (z) has a standard U-Net-like architecture.

m It has enough expressive power to reproduce some noise.
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® The network ¢ (z) has a standard U-Net-like architecture.
m It has enough expressive power to reproduce some noise.

m Optimization method with early stopping plays an important
role.
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Some insights

® The network ¢ (z) has a standard U-Net-like architecture.
m It has enough expressive power to reproduce some noise.

m Optimization method with early stopping plays an important
role.

m Solving each instance requires training the network.
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Some insights

® The network ¢ (z) has a standard U-Net-like architecture.
m It has enough expressive power to reproduce some noise.

m Optimization method with early stopping plays an important
role.

m Solving each instance requires training the network.

m It takes a lot of time.
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Example

(a) Data (y?) | (b) Iteration 0
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Example

(b) Iteration 50
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Example

(b) Iteration 100
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Example

(b) lteration 150
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Example

(b) Iteration 200
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Example

(b) Iteration 250
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Example

(b) Iteration 300
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Example

(a) Data (y?) (b) Iteration 350
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Example

(b) Iteration 400
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Example

(b) Iteration 450
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Example

(a) Data (y?) (b) Iteration 500
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Example

(b) Iteration 550
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Example

(a) Data (y?) (b) Iteration 600
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Example

(a) Data (y?) (b) Iteration 650
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Example

(b) Iteration 700
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Example

(b) Iteration 750
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Example

(b) Iteration 800
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Example

(a) Data (y?) (b) Iteration 850
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Example

(a) Data (y?) (b) Iteration 900
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Example

TI==EERE

(b) Iteration 950
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Example

(a) Data (y?) (b) Iteration 1000
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Example

(b) Iteration 1100
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Example

(b) Iteration 1150
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Example

(a) Data (y?) (b) Iteration 1200
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Example

(b) Iteration 1250
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Example

(b) Iteration 1300
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Example

(b) Iteration 1350
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Example

(b) Iteration 1400
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Example

(b) Iteration 1450
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Example

(b) Iteration 1500
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Example

(b) Iteration 1550
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Example

(b) Iteration 1600
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Example

(a) Data (y?) (b) Iteration 1650
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Example

(b) Iteration 1700
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Example

(a) Data (y?) (b) Iteration 1750
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Example

(a) Data (y?) (b) Iteration 1800
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Example

(a) Data (y?) (b) Iteration 1850
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Example

(b) Iteration 1900
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DIP vs Global-Local GAN?

(a) Iteration 1900 (b) Global-Local GAN

2Satoshi lizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. “Globally and Locally Consistent Image Completion”.
In: ACM Transactions on Graphics (Proc. of SIGGRAPH 2017) 36.4 (2017).
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b

NO TRAINING DATA
NEEDED
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Section 3

Analytic Deep Prior
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Trivial remark

Can the DIP approach be used to solve ill-posed inverse problems?
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Trivial remark

Can the DIP approach be used to solve ill-posed inverse problems?

Consider a trivial network ¢y (z) = W, and that W corresponds
to elements in X.
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Trivial remark

Can the DIP approach be used to solve ill-posed inverse problems?

Consider a trivial network ¢ (z) = W, and that W corresponds
to elements in X.

—> The approximate solution to the inverse problem is given by
R=pw(z)=W.

- 17 /47
DFG @ Universitat Bremen J




mng,

Analytic Deep Prior

Trivial remark

Can the DIP approach be used to solve ill-posed inverse problems?

Consider a trivial network ¢ (z) = W, and that W corresponds
to elements in X.

—> The approximate solution to the inverse problem is given by
R=pw(z)=W.

= Minimizing || Apw(z) — y°||> = ||[AW — y°|| by gradient
descent with respect to W is equivalent to the classical Landweber
iteration.

(5)

1
o~ —
n

17 /47
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Convex optimization reminder

In the variational approach we usually minimize:

1
J(x) = S llAx — Y|P + aR(x).

where R is convex but not differentiable.
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(1]
mng,

Convex optimization reminder

In the variational approach we usually minimize:
1
J(x) = EHAX*y‘sll2+aR(X)- (6)
where R is convex but not differentiable.

The necessary first order condition for a minimizer is given by

0 € A*(Ax — y°) + adR(x) (7)
x € x + M*(Ax — y°) + AadR(x)  (8)
X — A*(Ax — y%) € x + M\adR(x). (9)
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(1]
mng,

Convex optimization reminder
In the variational approach we usually minimize:
1
J(x) = EHAX*y‘;II2+aR(X)~ (6)
where R is convex but not differentiable.

The necessary first order condition for a minimizer is given by

0 € A*(Ax — y°) + adR(x) (7)
X € X+ M (Ax — y°) + MNadR(x)  (8)
x — AM*(Ax — y°) € x + M\adR(x). (9)
which is equivalent to
. * 0 —
Prox (x A (Ax — y )) X. (10)

DFG @ Universitat Bremen

18/47



mng,

Analytic Deep Prior

Convex optimization reminder

Turning the fixed point condition into an iteration scheme yields

K+l _ K _ A ( Ak _ 0

X = E&% (X A (AxS —y )) (11)
_ . * k * 0
~ Prox ((/ AA*A)x +)\Ay) . (12)

Rewriting W = | — AA*A, b = AA* and ¢(-) = Prox)or(+) yields

Xk = (ka n b) (13)

19/47
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Convex optimization reminder

Consider R(x) = I+(x) (indicator function for non-negative
numbers)

Iig%(x) = Relu(x) (14)

20/ 47
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Convex optimization reminder

Example

Consider R(x) = I+(x) (indicator function for non-negative

numbers)
Ii\’r%(x) = Relu(x) (14)

The iteration scheme x**1 = ¢ (Wx* + b) is quite similar to a
Neural Network.

20/ 47
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Now we consider the particular architecture of a fully connected
feed-forward iterative network with L identical layers

ow(z) = xt, (15)
where
Xk — (ka + b) (16)
fork=0,..,L—1and x° = z.

¢ is the proximal mapping of a regularizing functional AaR
W is such that | — W = AB*B for some B
b = AB*y?®

21 /47

DFG @ Universitat Bremen



(17|
EEE,

Analytic Deep Prior \ "

Analytic Deep Prior

In this setting, ow/(z) is identical to the L-th iterate of the PG
method for minimizing

Ja(x) = 5 1Bx — | + 0R(x). (17)

. 22/47
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Analytic Deep Prior

Analytic Deep Prior

In this setting, ow/(z) is identical to the L-th iterate of the PG

method for minimizing
1
Jp(x) = 5[1Bx = y°|I* + aR(x), (17)
If ow(z) = x(B) = argmin Jg(x): Updating W, i.e. B, changes
the discrepancy term in the Tikhonov functional.

22 /47
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Analytic Deep Prior

In this setting, ow/(z) is identical to the L-th iterate of the PG
method for minimizing

Ja(x) = 5 1Bx — | + 0R(x). (17)

If ow(z) = x(B) = argmin Jg(x): Updating W, i.e. B, changes
the discrepancy term in the Tikhonov functional.

Definition
We call this setting an analytic deep prior if B is trained from a
single data point y® by gradient descent applied to

min | Ax(B) — y°||?. (18)

. 22/47
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Training/Optimization

The training of B for given data y? is achieved by a gradient
descent method applied to

F(B) = S1IAx(B) — | (19)
s.t. x(B) = argxmin Jg(x). (20)

» 23/47
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(1]
mng,

Training/Optimization

The training of B for given data y? is achieved by a gradient
descent method applied to

F(B) = 5|Ax(B) — | (19)
sit. x(B) = argxmin Jg(x). (20)

The stationary points are characterized by OF(B) = 0 and gradient
descent iterations with stepsize 7 are given by

Bt = B — noF(BY). (21)
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(1]
mng,

Training/Optimization

The training of B for given data y? is achieved by a gradient
descent method applied to

F(B) = 5|Ax(B) — | (19)
sit. x(B) = argxmin Jg(x). (20)

The stationary points are characterized by OF(B) = 0 and gradient
descent iterations with stepsize 7 are given by

Bt = B — noF(BY). (21)

Hence we need to compute the derivative of F with respect to B.

DFG @ Universitat Bremen
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FINALLYWE CANDO
SOME MATH
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Example
Consider R(x) = 5||x||2.
In this case x(B) = arg min Jg(x) = (B*B + al)"1B*y’.

For illustration we consider the rather unrealistic case x' = u,
where u is a singular function of A (Au = ov)

vl = Au+6bv=(0+0)v (22)

A lengthy computation exploiting B® = A and 3y = o shows that

B! = B — v (23)

» 25/ 47
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Implementation

Goal: Find optimal B, to minimize the loss function

SIax(B) ~ P (24

. 26/ 47
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Implementation

Goal: Find optimal B, to minimize the loss function

S1Ax(B) — P (24)

Equivalent to train the network oy (z) for the single data point
(z,y°) updating B by back-propagation.

» 26 /47
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Analytic Deep Prior

Implementation

Goal: Find optimal B, to minimize the loss function

1

SIAx(B) ~ y'IP (24)
Equivalent to train the network oy (z) for the single data point
(z,y°) updating B by back-propagation.

How many layers should the network have in order to ensure that
ew(z) = x(B) = argmin Jg?
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Analytic Deep Prior

Implementation

Goal: Find optimal B, to minimize the loss function

1

SIAx(B) ~ y'IP (24)
Equivalent to train the network oy (z) for the single data point
(z,y°) updating B by back-propagation.

How many layers should the network have in order to ensure that
ew(z) = x(B) = argmin Jg?

Thousands of layers! (slow convergence of the PG method).
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Analytic Deep Prior

Implementation

Goal: Find optimal B, to minimize the loss function

1

SIAx(B) ~ y'IP (24)
Equivalent to train the network oy (z) for the single data point
(z,y°) updating B by back-propagation.

How many layers should the network have in order to ensure that
ew(z) = x(B) = argmin Jg?

Thousands of layers! (slow convergence of the PG method).

Prohibitive!

26 / 47
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Implementation

Solution:
m Consider only a reduced network with a small number,
L =10, of layers
m Set the input to be the network’s output after the previous
iteration.

- 27 /47
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Implementation

Solution:
Consider only a reduced network with a small number,
L =10, of layers
Set the input to be the network's output after the previous
iteration.

L L L
7 — (pW() —> (pwl —> §0W2 —> e —> ¢Wk —> xk

k+1

Figure: The implicit network with (k + 1)L layers. Here ‘vak refers to a

block of L identical fully connected layers with weights Wi = | — AB,” B
and by = AB/] y°.
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Section 4

Academic Example
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Setup

Consider the integration operator A: L2([0,1]) — L2([0,1])

(Ax)(t):/o x(s)ds. (25)

and
m A, € R"™": discretization of A.
» xI € R": one of the singular vectors u of A.
w y® = Axt 4+ 7 with 7 ~ N(0,021,)

. 29/ 47
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Ground-truth and data

0.05 4

0001 % | Xt

—0.051

—0.101 o T — T —
0.0 0.2 0.4 0.6 0.8 1.0

0.005 A

R yﬁ

0.000 1 e
~0.005

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure: xt = us and y® with n =200 and 10% of noise.
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Results (R(:) = %|

Reconstructions (a =0.02) True error 1Bk = Bi-1llF Bopt
o 0.006
10 - -
. 0.005
0.05 Xt 10~ 0.004
0.003
0.00 xr 100 107 0.002
8, -
_0.05 X(Boe) . 0.001
106
0.000
-0.10 - = . -0.001
00 02 04 06 08 10 [} 6000 0 6000
Reconstructions (a = 0.0015) True error 1Bk = Bx-1llr
0.10 - 107 0.005
0.05 — 100 107 0.004
X s 0.003
0.00 xr 10
0.002
X(Bopt) 10-6
-0.05 0.001
10! o
-0.10 10 0.000
0 6000 0 6000
True error 1Bk — B-1llr
0.10 102 0.005
o
0.05 — 10 10-¢ 0.004
i 0.003
0.00 xr 10
0.002
X(Bopt) 1071 10-6
—0.05 0.001
7
—0.10 10 0.000
00 02 04 06 08 10 0 6000 0 6000
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Ground-truth and data

501
oA
o xt
=50
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
0.4 e/ SAL
0.2
Yooyran oy
0.0 ‘frdpan = \/\ eyt
-0.2 l
o4 L
0.0 0.2 0.4 0.6 0.8 1.0

Figure: x': sparse and y® with n = 200 and 10% of noise.
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Ty

Results (R(-) = |

50

=50

vFG

Reconstructions (a = 0.005)

1)

v

0.0 0.2 0.4 0.6 0.8 1.0
Reconstructions (a = 0.001)
A 0
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Network convergence

Ix(Bk) = xil|?
100 4
10—3 4
107 - —— @=0.02
100 ] —— a=0.0015
—— a=0.0011
10712 4
10715 4
0 2000 4000 6000
Kk

Figure: Difference between x, and x(By) after each training iteration k.
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Results (adaptive )
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Section 5

Magnetic Particle Imaging (MPI)

. 36/ 47
DFG kLl_JJ) Universitat Bremen J




EEE,

Magnetic Particle Imaging (MPI) \ "

What is MPI?

Imaging modality based on injecting ferromagnetic nanoparticles
which are consequently transported by the blood flow.
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What is MPI?

Imaging modality based on injecting ferromagnetic nanoparticles
which are consequently transported by the blood flow.

Goal: Measure the 3-D location and concentration of the
nanoparticles.
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What is MPI?

Imaging modality based on injecting ferromagnetic nanoparticles
which are consequently transported by the blood flow.

Goal: Measure the 3-D location and concentration of the
nanoparticles.

Advantages: E—
g wg'v T

m High spacial resolution
(< 1mm)

» Measurement time (< 0.1 s)

= No harmful radiation

Figure: Magnetic particles
developed in Liibeck
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Magnetic Particle Imaging (MPI)

How it works?

A magnetic field is applied, which is a superposition of:

m static gradient field, which generates a field-free-point (FFP)
m highly dynamic spatially homogeneous field, which moves the
FFP in space.

Mean magnetic moment of the nanoparticles in the
neighborhood of the FFP generates an electro-magnetic field.
Voltages are measured by so-called receive coils.

The time-dependent measurements v,(t) in the receive coils
constitute the data for reconstructing c(x).
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Inverse Problem

Linear Fredholm integral equation of the first kind describes the
forward operator.
u Precisely modeling MPI is still an unsolved problem3.

m The integral kernel is commonly determined in a
time-consuming calibration procedure.

3Tobias Kluth, Bangti Jin, and Guanglian Li. “On the degree of ill-posedness of multi-dimensional magnetic
particle imaging”. In: Inverse Problems 34.9 (2018).
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Magnetic Particle Imaging (MPI)

Inverse Problem
Linear Fredholm integral equation of the first kind describes the
forward operator.

Precisely modeling MPI is still an unsolved problem3.

The integral kernel is commonly determined in a
time-consuming calibration procedure.

After discretization we end up with a linear system:

Sc=v (26)

3Tobias Kluth, Bangti Jin, and Guanglian Li. “On the degree of ill-posedness of multi-dimensional magnetic
particle imaging”. In: Inverse Problems 34.9 (2018).
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Magnetic Particle Imaging (MPI)

(1]
mng,

Inverse Problem
Linear Fredholm integral equation of the first kind describes the
forward operator.

Precisely modeling MPI is still an unsolved problem3.

The integral kernel is commonly determined in a
time-consuming calibration procedure.

After discretization we end up with a linear system:
Sc=v (26)

Goal: Reconstruct ¢ from measured noisy data v0 = Sc + 7.

3Tobias Kluth, Bangti Jin, and Guanglian Li. “On the degree of ill-posedness of multi-dimensional magnetic
particle imaging”. In: Inverse Problems 34.9 (2018).
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Experimental setup

Figure: Used experimental platform with the FFP trajectory in blue. *

4Photo taken at University Medical Center Hamburg-Eppendorf by T. Kluth.
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Results

l 0.03
0.02

o 5 10 15 20 3

(a) Phantom (4mm) (b) Kacmarz reconstruction
(a=5-10"%)
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Magnetic Particle Imaging (MPI)
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Results
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(b) A reconstruction
(a=5-1073)
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Magnetic Particle Imaging (MPI)
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Results
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(b) DIP reconstruction
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Results

o 5 10 15 20 5

(a) Phantom (2mm) (b) Kacmarz reconstruction
(a=5-10"%)
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Results
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(a) Phantom (2mm) (b) h reconstruction
(a =5-1073)
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Results
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(a) Phantom (2mm) (b) DIP reconstruction
(Ir =5-1075)
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Thanks!

47 /47
DFG w Universitat Bremen J




	Introduction
	Deep Image Prior (DIP)
	Analytic Deep Prior
	Academic Example
	Magnetic Particle Imaging (MPI)
	 

